

TED UNIVERSITY

CMPE 492/SENG 492 Senior Project II

SyntaxSavior Final Report

3.05.2025

Team Members:

İrem Beşiroğlu Sofware Engineering

Yiğit Oğuzhan Kökten Computer Engineering

Yüksel Çağlar Baypınar Computer Engineering

1. Introduction

This final report details the design, implementation, and assessment phases of the SyntaxSavior

project, an academic endeavor created to help rookie programmers in TED University's CMPE

113 course. The leap from theoretical programming principles to real coding might be especially

difficult for first-year university students. SyntaxSavior bridges this gap by providing real-time,

contextualized help via a lightweight development environment that integrates with Visual Studio

Code (VS Code).

Novice programmers often struggle to translate classroom concepts into working code. In early

courses such as CMPE113, students face repeated bugs and cryptic compiler messages, which

hinder learning For example, research notes that many beginners are “plagued by recurring bugs,

syntax errors and code smells” and find environment error messages “notoriously cryptic”.

SyntaxSavior was motivated by this gap: it provides contextual, AI-driven feedback to help

learners bridge theory and practice. By integrating automated analysis and feedback into the

coding workflow, the system supports independent debugging and skill-building. Its scope

includes assisting students during lab assignments (via a VS Code extension) and enabling

instructors/assistants to manage lab instructions (via a web portal), thereby easing the transition

from theory to practical coding.

The value of SyntaxSavior goes beyond the confines of a particular course. It demonstrates

how intelligent instructional technologies may improve student interest and comprehension in

computer science education, particularly in fundamental programming courses. This paper

assesses the project's ultimate state from a systems engineering standpoint while also considering

the larger global, sociological, economic, and educational consequences of incorporating such

intelligent support systems in academic environments.

2. Final Architecture and Design

2.1. System Architecture

SyntaxSavior is a multi-tier system combining an IDE plugin, a web portal, and a backend. The

frontend plugin is a Visual Studio Code extension written in TypeScript/JavaScript, using the

official VS Code Extension API. The plugin monitors student Java code: it highlights syntax issues

and sends code snippets to the backend when triggered by a submission command. The assistant

portal is a web interface (built with standard web technologies) where teaching assistants upload

or edit lab assignment instructions; it communicates with the backend via REST endpoints. The

backend is a Spring Boot (Java) application that exposes a RESTful API. As a Spring Boot

application, it auto-configures an embedded server to handle HTTP requests. The backend

processes requests from both the plugin and portal: it authenticates users, fetches or stores lab

instructions, and coordinates code analysis. When the plugin submits code, the backend forwards

it to a separate Python-based analysis engine (running as a service). This engine uses a large

language model (via the Gemini API) to interpret errors and generate feedback. In parallel, the

backend queries a Milvus vector database to retrieve relevant course materials. Milvus is an open-

source high-performance vector database designed for large-scale similarity search, which we use

to semantically match the student’s code or error against stored hints and documentation. All

components follow REST architecture principles: resources are exposed via URIs and manipulated

with standard HTTP methods. For example, the API treats code submissions and lab instructions

as resources, in line with REST guidelines. Communication is via HTTPS calls (chosen for

simplicity over more complex web sockets) with JSON payloads. Overall, SyntaxSavior’s

architecture is a clean separation of concerns: the VS Code front end (user interface), the assistant

web front end (instruction management), and the backend services (business logic, AI analysis,

and data storage).

2.2. Design Enhancements

Throughout development, several enhancements were made. The user interface was iteratively

redesigned for clarity and usability; feedback from students led to improved layout and navigation

within the VS Code plugin. Code snippets sent to the backend now use secure transport

(HTTPS/TLS) to protect student work. Indeed, the system’s security controls enforce encrypted

data transfers and user authentication, so code and user credentials are never sent in plaintext. The

code analysis engine was refined to recognize more solution patterns: for example, the vector

database was expanded with additional lab examples, and the matching algorithm was tuned to

better identify logically correct variants of common problems. Finally, a new “submission

readiness” feature was added. The backend now evaluates code complexity and error counts to

give students a readiness indicator – warning them if the solution contains many errors or is likely

incomplete. These improvements (secure communication, smarter pattern matching, and readiness

detection) were driven by testing and feedback, ensuring the final design is robust and user-

friendly.

3. Engineering Impact

3.1. Global and Societal Impact

SyntaxSavior contributes to educational equity by making programming help more widely

accessible. By automating preliminary feedback, it can serve many students without requiring one-

on-one tutoring for every error. In regions with good connectivity, such AI tools can “bridge gaps

in subject expertise” and connect learners to quality instruction. In this way, SyntaxSavior aligns

with global education goals: it supports quality education (UN SDG 4) by providing scaffolding

for novices. On a societal level, improving coding proficiency addresses the workforce skill gap

in technology fields. However, care must be taken to ensure pedagogy guides AI use; UNESCO

warns that educational AI should be steered by pedagogical principles and human values.

SyntaxSavior is designed with these principles in mind, aiming to enhance (not replace) instruction

and to promote student learning rather than shortcuts.

3.2. Economic Impact

Economically, SyntaxSavior could reduce instructional costs by lightening the grading and

tutoring burden on faculty and teaching assistants. Automating common feedback frees instructors

to focus on deeper teaching activities. As an educational technology, it may spawn new edtech

services or roles (for example, maintaining and localizing the system). In the long run, by

improving student coding skills early on, the project may boost workforce readiness and

productivity in the software industry. On the other hand, initial development costs (engineering

time, cloud resources for AI queries) must be weighed. Ultimately, the tool is intended to be open

and cost-efficient: we built it with readily available technologies and focused on reuse of pre-

trained models (via the Gemini API) rather than expensive training in-house.

3.3. Environmental Impact

The environmental footprint of SyntaxSavior is mostly in its computational components. Running

the Spring Boot server and the Milvus database on campus servers has a modest energy cost. More

significantly, querying a large language model (LLM) has an energy impact. For context, training

a model like GPT-3 consumed on the order of 1,287 MWh and emitted ~552 metric tons of CO₂.

By contrast, SyntaxSavior uses a pre-trained model via API, so the heavy training energy is

externalized (Google handles that). Each inference call still consumes some compute on the cloud,

which contributes to the carbon footprint. We mitigate this by batching requests and caching

common results when possible. In the broader view, an in-classroom AI tutor likely consumes far

less energy per student hour than having every student travel or every assignment graded manually.

Nonetheless, we monitor usage and aim to run services on efficient infrastructure to minimize

energy use. Additionally through digital content delivery and reduced need for printed materials,

the system supports sustainable educational practices.

4. Contemporary Issues

4.1. Use of AI in Education

AI-powered learning tools are an emerging trend in education. Such tools can offer personalized,

on-demand help and free educators from repetitive tasks. For example, UNESCO notes that AI is

increasingly used to automate grading and administrative tasks, potentially easing teachers’

workload. SyntaxSavior embodies this promise by delivering instant feedback on code. However,

AI in education also raises questions: there is not yet conclusive evidence that generative AI

improves learning outcomes. We must ensure that AI suggestions encourage understanding, not

just correct answers. Our design intentionally frames feedback in educational terms (e.g.

explaining the reason for a syntax error) and avoids giving outright solutions, in line with best

practices in AI-in-education research.

4.2. Cheating and Generative AI

The rise of powerful AI (e.g. ChatGPT) has made cheating a hot-button issue. Students could

misuse generative AI to automatically write code answers. Experiments have shown that while AI

tools can solve problems quickly, students learn less: in one MIT study, students using ChatGPT

solved a task fastest but later “remembered nothing”. SyntaxSavior’s approach is different: rather

than generating solutions, it explains and guides. Nevertheless, we built into the system and intend

to work in tandem with already existing anti-cheating measures (e.g. input validation, plagiarism

checks). For instance, code submissions are logged and any attempt to bypass the plugin (e.g.

submitting random output) is flagged. By focusing on explanation rather than answer-generation,

SyntaxSavior aims to deter misuse and promote learning integrity.

4.3. Accessibility and Digital Divide

SyntaxSavior addresses the digital divide by making coding tools available to all users regardless

of their hardware limitations. The application runs smoothly on school lab computers with mid-

to-low tier hardware, requiring significantly less system resources than alternatives like Eclipse

IDE that are installed in our educational environment. This lightweight design ensures students

and educators can access professional development tools without the need for equipment upgrades

or specialized hardware. SyntaxSavior works across Windows, macOS and Linux platforms due

to the cross platform of VS Code, allowing users to maintain consistent workflows regardless of

which operating system they use at school or home. The tool's modest bandwidth requirements

make it practical for users in lab environments where the load on network may be high due to the

number of students actively using it. By integrating seamlessly with VS Code, SyntaxSavior

creates a bridge between entry-level programming environments and industry-standard tools,

helping users transition between platforms based on their current resources without disrupting their

learning or development process.

5. New Tools and Technologies Used

 VS Code Extension Development: Developed in TypeScript using the VS Code

Extension API, which provides hooks for creating commands, editors, and UI within the

IDE.

 Spring Boot: A Java framework that simplifies building RESTful web services; its

@SpringBootApplication annotation auto-configures an embedded server and

components. We used Spring MVC and Spring Security for API endpoints and

authentication

 Milvus Vector Database: We use Milvus (an open-source high-performance vector

database) to store embeddings of lab instructions and code examples. Queries from the

backend find the nearest vectors to a given code snippet, enabling semantic retrieval of

relevant hints. Milvus’s Python client API makes integration straightforward.

 Python LLM Engine: The Python LLM Engine is a dedicated backend service responsible

for invoking the LLM API to assist with educational guidance and code-related feedback.

It serves as the intelligence layer behind the SyntaxSavior assistant. We utilize RESTful

API calls to access LLM’s chat/completions endpoints with carefully designed system and

user prompts tailored to CMPE113 coursework. To ensure that the responses are highly

relevant and aligned with the course content, we fine-tune the behavior of Gemini using

custom prompts constructed dynamically from context-retrieved documents stored in a

Milvus vector database. This database contains lecture notes, lab instructions and tasks,

Course textbook excerpts and additional curated programming explanations.

 Socket/REST Communication: The plugin and portal communicate with the backend

using HTTPS (chosen over WebSockets for simplicity). Similarly, the backend and Python

engine communicate over a REST API. This decision leveraged existing REST guidelines

and avoids the overhead of maintaining WebSocket state.

6. Background Research and Resources

Our design was informed by research in programming education and by vendor documentation.

We reviewed education research showing that contextual, elaborated feedback can aid novices,

and used taxonomies of student errors (e.g., Becker et al., 2019) to categorize problems. Classic

pedagogy (such as Productive Failure models) influenced our feedback style. On the technical

side, we studied the [Java Language Specification] and Oracle’s Java API docs to interpret

common compiler messages. Vendor documentation guided implementation: for example, the

IEEE 1016-2009 standard was used as a blueprint for structuring our design documents, and Spring

Boot and VS Code API guides provided usage examples. We also consulted the Gemini API

documentation for model usage and the Milvus documentation for embedding indexing.

Altogether, these resources ensured our technical choices were sound and our pedagogical

approach was research-based.

7. Test Results

We devised test cases covering all major components. The following table summarizes

representative test cases (as documented in the Test Plan) and outcomes:

ID Feature/Component Test Case
Expected

Outcome
Result Notes

TC-

PL-01
VS Code Plugin UI

Verify plugin

menus, buttons,

and prompts

UI elements render

correctly; clickable

actions work.

Pass

Minor UI tweaks

needed on

theme.

TC-

PL-02

Plugin-Backend

Communication

Student submits

code via plugin

Code is sent to

server; success

message received.

Pass

TC-

BE-

01

Backend API (REST)

GET/POST on

code submission

and instruction

endpoints

Correct HTTP

status and JSON

response.

Pass

ID Feature/Component Test Case
Expected

Outcome
Result Notes

TC-

AI-01

Python Analysis

Engine

Submit code with

syntax error

AI returns an

appropriate

feedback message.

Pass

Accuracy of

message checked

by graders.

TC-

DB-

01

Vector DB Retrieval

Query Milvus with

a known code

snippet

System returns

related lab

hints/materials.

Pass

TC-

UR-

01

User Roles

Attempt student

action with admin

credentials

Access denied

(student-only

function).

Pass
Role-based

checks working.

TC-

UR-

02

User Roles

Instructor uploads

lab instructions via

portal

Instructions stored

in DB; accessible

to students.

Pass

TC-

SEC-

01

Security

Submit malicious

input or attempt

SQL injection

Input is sanitized;

request is rejected

or safe.

Pass

No

vulnerabilities

found.

TC-

SEC-

02

Encryption

Inspect network

traffic during

submission

Payload is

encrypted.
Pass

Verified with

SSL monitoring.

TC-

ERR-

01

Error Handling

Force

network/server

failure during

submission

Plugin shows error

notification; no

crash.

Pass

In summary, all critical test cases passed. The system correctly handled code submission, feedback

generation, data retrieval, and security checks. User role enforcement and error handling worked

as intended. Minor UI issues (theme alignment) were noted and fixed. Overall, the tests validated

that SyntaxSavior meets its functional and reliability goals.

8. Ethical Considerations

 The ethical responsibilities are considered by the team while developing this project. The
application of artificial intelligence (AI) in the classroom is not only bringing technological
benefits but also causes a series of ethical responsibilities that must be explicitly laid out to
ensure fairness, integrity, and student’s learning. SyntaxSavior is developed with a strong
emphasis on educational ethics, particularly in the field of computer science education where
help can so quickly become cheating.

 Academic Integrity
One of the principal ethical concerns in the development of AI-based learning aids is
maintaining academic integrity. SyntaxSavior is engineered to provide not direct code
solutions, but step-by-step conceptual hints and curriculum-aligned explanations. In so doing,
it promotes learning through guided discovery rather than spoon-feeding solutions. The system
includes hint frequency limits within its design and identifies repetitive or passive behaviors
indicative of over-reliance. All output is designed to promote understanding, and functions
such as similarity detection and session logs are used to discourage plagiarism.

 Data Privacy and User Consent

Administering user information—student-crafted source code, to be precise—requires strict
compliance with data protection provisions. SyntaxSavior ensures complete data transmission
encryption between the backend and plugin, utilizing industry-wide standards (HTTPS with
TLS 1.3). Persistent storing of no student data takes place without consent being explicitly
asked for, and personally identifiable information gets anonymized on checking for tests or
analysis purposes. Later developments intend to include manifest consent practices as well as
policies for retaining information in compliance with GDPR and parallel frameworks.

 Transparency and Explainability

One challenge in educational AI is the 'black box' nature of many algorithms. SyntaxSavior
mitigates this by using deterministic, explainable rule-based components in tandem with the
AI model. Feedback includes rationale statements (e.g., “This error may occur because variable

X was not initialized”), helping students understand not only what went wrong, but why. This
fosters metacognitive development and avoids blind trust in the system’s suggestions.

 Human-Centered Design and Teacher Augmentation

SyntaxSavior is not intended to replace instructors, but to augment their capacity to support
students. Ethical deployment of AI in education should empower teachers by automating
repetitive tasks (e.g., syntax checks), freeing them to focus on deeper mentorship. The assistant
portal is specifically designed to keep humans in the loop: instructors can give lab guidance by
uploading the specific lab’s instruction pdf.

9. Future Enhancements

Possible improvements include LMS Integration (linking SyntaxSavior with university learning

management systems to streamline authentication and possibly auto-fetch assignments), IntelliJ Support

(developing an equivalent plugin for the IntelliJ IDE), Enhanced Personalization (adapting hints to

individual student history), and Gamification Features (badges or progress tracking to motivate learners).

Other ideas are expanding to additional programming languages and adding a framework that allows peer-

to-peer collaboration. Finally, ongoing refinement of the AI feedback (e.g. multi-turn clarification dialogs)

and scaling infrastructure (for more courses) may be planned as the project matures.

10. Conclusion

SyntaxSavior was conceived as a means to efficiently solve the obstacles experienced in CMPE

113 programming laboratories. It effectively demonstrates its value as an intelligent tutoring aid

for introductory programming, efficiently addressing the aforementioned obstacles in an

innovative way. By combining a VS Code plugin, an assistant portal, and a robust backend

architecture (Spring Boot + Python AI + Milvus), the system delivers real-time, contextual

guidance to novice programmers while reinforcing teaching objectives through structured

feedback. A key strength of the platform lies in its ability to transform opaque compiler errors into

explanatory feedback that aligns with course objectives, bridging the gap between theoretical

understanding and practical application. As an academic project, SyntaxSavior not only hopes to

enhance students' programming capabilities but also serve as a valuable learning platform for

ourselves as the developers, following software engineering standards such as IEEE 1016 for

design documentation and implementing modern architectural practices. In conclusion,

SyntaxSavior demonstrates clear pedagogical value by acting as an intelligent, context-aware

learning helper that reinforces conceptual understanding, while simultaneously laying the

groundwork for further research in AI-enhanced engineering education.

11. References

1. IEEE 1016-2009, IEEE Standard for Information Technology – Systems Design –

Software Design Descriptions

(https://en.wikipedia.org/wiki/Software_design_description#:~:text=IEEE%201016)

2. Zalando, RESTful API and Event Guidelines (https://opensource.zalando.com/restful-api-

guidelines/#:~:text=Comparing%20SOA%20web%20service%20interfacing,and%20can

%20be%20manipulated%20via).

3. Visual Studio Code Extension API Reference

(https://code.visualstudio.com/api/references/vscode-api#:~:text=VS%20Code%20API .

4. Milvus Documentation (Open-source Vector Database)

(https://milvus.io/#:~:text=Milvus%20is%20an%20open,vectors%20with%20minimal%2

0performance%20loss).

5. Wang et al., “Learning From Errors” (Frontiers in Education, 2021) – on novice error

comprehension

(https://pmc.ncbi.nlm.nih.gov/articles/PMC8669433/#:~:text=error%20messages%20cont

ain%20detailed%20information,missing%20a).

6. Giri & Richard, ICLS 2023 – “It’s a Little Frustrating, but Fun” (on novice debugging

challenges)

(https://www.researchgate.net/publication/375408699_It's_a_Little_Frustrating_but_Fun

_Supporting_Novice_Programmers'_Learning_Through_Unscaffolded_Problem-

Based_Designs).

7. Shein, “The Impact of AI on Computer Science Education” (Commun. ACM, 2024)

(https://cacm.acm.org/news/the-impact-of-ai-on-computer-science-

education/#:~:text=One%20group%20was%20allowed%20to,the%20task%20down%20i

nto%20components).

8. UNESCO, “Use of AI in Education” (article, 2023)

(https://www.unesco.org/en/articles/use-ai-education-deciding-future-we-want);

UNESCO Global Partnership blog (2022)

(https://www.globalpartnership.org/blog/bridging-gap-how-technology-can-mitigate-

global-teaching-

crisis#:~:text=Where%20robust%20internet%20access%20exists%2C,subjects) (on

education tech and access).

9. Smith et al., “The Carbon Emissions of Writing and Illustrating” (Nat. Sci. Rep. 2024) –

figures on AI training energy (https://www.nature.com/articles/s41598-024-54271-

x#:~:text=on%20the%20environmental%20impact%20of,5%20metric%20tons%20of).

