

TED UNIVERSITY

CMPE 492/SENG 492 Senior Project II

SyntaxSavior Test Plan Report

13.05.2025

Team Members:

İrem Beşiroğlu Sofware Engineering

Yiğit Oğuzhan Kökten Computer Engineering

Yüksel Çağlar Baypınar Computer Engineering

Table of Contents

1. Introduction ... 3

1.1. Scope ... 3

1.2. Objectives .. 4

2. Features to be Tested ... 5

2.1. IDE Plugin ... 5

2.2. Backend Processing .. 6

2.3. AI Intermediate Feedback .. 8

2.4. Vector Database ... 9

2.5. User Roles .. 10

2.6. Submission Checks ... 11

2.7. Feedback Accuracy .. 13

2.8. Error Handling ... 14

2.9. Security ... 15

3. Testing Methodology ... 16

3.1. Unit Testing:.. 16

3.2. Integration Testing: ... 17

3.3. System Testing: ... 18

3.4. Performance Testing ... 19

3.5. User Acceptance Testing (UAT) .. 20

3.6. Beta Testing .. 21

4. Test Environment ... 22

5. Sample Test Case ... 24

6. Conclusion .. 27

7. References .. 28

1. Introduction

This Test Plan Report outlines the scope, objectives, and methodology for testing the

SyntaxSavior system, an educational platform designed to assist students in

introductory programming courses (e.g., CMPE113) at TED University. The system

integrates a Visual Studio Code (VS Code) plugin, a backend processing server, an

AI-powered feedback mechanism, and a vector database to provide real-time code

analysis, contextual feedback, and secure access control. The test plan ensures that

the system meets functional, non-functional, and educational requirements while

identifying and mitigating risks to deliver a reliable, scalable, and user-centric tool.

1.1. Scope

The testing scope encompasses all critical components and functionalities of the

SyntaxSavior system, ensuring comprehensive validation of its features and

interactions. The following areas are included in the testing process:

• IDE Plugin Features: Testing the VS Code plugin’s user interface elements

(e.g., syntax highlighting, error pop-ups), communication with the backend,

and integration with local language servers or linters for real-time code

monitoring.

• Backend Processing and AI Feedback: Validating the backend’s code

analysis capabilities, AI-driven intermediate feedback generation, and error

categorization (syntax, runtime, logical). Note that AI feedback is not direct

but serves as an interpretive layer for code analysis.

• Vector Database Interaction: Ensuring accurate retrieval of contextual

course materials and explanations from the vector database (e.g., Milvus or

ChromaDB).

• Security Controls: Verifying authentication, authorization, rate-limiting,

anti-cheating mechanisms, and protection against jailbreaking or privilege

escalation attempts through input filtering and validation.

• User Roles and Data Flow: Testing access control and data flow for four

user roles: student, instructor, assistant, and administrator.

• Feedback Accuracy: Conducting non-automated user acceptance testing to

evaluate the relevance and educational clarity of feedback provided to

students.

Testing excludes external systems (e.g., TED University’s Learning Management

System) unless directly integrated with SyntaxSavior, and focuses on the system’s

core functionalities as defined in the high-level and low-level design reports.

1.2. Objectives

The primary objectives of the test plan are to ensure that SyntaxSavior meets its

functional, non-functional, and educational goals while maintaining reliability,

security, and usability. Specific objectives include:

• Verify Functional Requirements: Confirm that all system components (IDE

plugin, backend, AI feedback, vector database) operate as specified in the

high-level design, including real-time code monitoring, accurate error

detection, and contextual feedback generation.

• Validate Non-Functional Requirements: Ensure scalability, performance

(e.g., handling up to 50 concurrent submissions), security (e.g., jailbreak

protection, encrypted data transfers), and usability for students and

instructors.

• Assess Educational Effectiveness: Validate that feedback is curriculum-

aligned, promotes learning, and avoids direct solutions to foster independent

problem-solving, as per the system’s pedagogical goals.

• Identify and Mitigate Risks: Detect potential issues such as server overload,

incorrect feedback, or security vulnerabilities (e.g., unauthorized access or

jailbreaking attempts) and implement mitigation strategies.

• Ensure System Maintainability: Verify that the system adheres to

engineering standards (e.g., IEEE 1016-2009, SOLID principles) for ease of

maintenance and future scalability.

• Test IDE-Specific Features: Confirm seamless integration with VS Code,

including plugin responsiveness, error pop-up functionality, and

compatibility with local linters.

• Validate Security Against Jailbreaking: Test input filtering and validation

mechanisms to prevent malicious inputs or privilege escalation, ensuring

robust protection for an educational environment.

By achieving these objectives, the test plan ensures that SyntaxSavior is a robust,

secure, and effective tool for supporting programming education.

2. Features to be Tested

This section describes the key features of the SyntaxSavior system that will be

tested, focusing on their functionality, performance, and alignment with educational

goals. Each feature is mapped to specific components from the high-level and low-

level design reports.

2.1. IDE Plugin

Description: The IDE Plugin, implemented as a VS Code extension, serves as the

primary interface for students to interact with SyntaxSavior. It provides real-time

code monitoring, syntax checking, and feedback display within the VS Code

environment. The plugin communicates with the backend for in-depth analysis and

integrates with local language servers or linters for surface-level error detection.

Features to Test:

• Syntax Highlighting (Test ID: IDE-001): Verify that the plugin correctly

highlights Java code syntax in VS Code, adhering to standard Java

conventions.

• Live Error Checking (Test ID: IDE-002): Ensure the plugin detects surface-

level errors (e.g., missing semicolons, unmatched brackets) in real-time and

displays them in the editor.

• Pop-Ups for Suggestions (Test ID: IDE-003): Confirm that the plugin

generates contextual pop-up suggestions for detected errors, including hints

without direct solutions (e.g., “Add a semicolon to terminate the statement”).

• Backend Communication (Test ID: IDE-004): Validate bidirectional

communication with the backend via REST API, ensuring code submissions

are sent and feedback is received accurately.

• UI Integration (Test ID: IDE-005): Test the plugin’s UI elements (e.g., error

highlights, feedback panels) for responsiveness and usability within VS Code.

• Hybrid Monitoring (Test ID: IDE-006): Verify the hybrid monitoring

approach, where manual triggers initiate in-depth analysis and automatic

checks provide surface-level feedback, balancing user control and system

efficiency.

• Rationale: These tests ensure that the plugin provides a seamless and

educationally effective experience, aligning with the system’s goal of

fostering independent learning while offering timely assistance.

2.2. Backend Processing

Description: The Backend Processing subsystem, implemented using a Spring Boot-

based Java server, handles code analysis, error categorization, and feedback

generation. It processes code submissions from the IDE plugin, integrates with the

AI model for interpretive analysis, and retrieves contextual materials from the

vector database.

Features to Test:

• Code Analysis (Test ID: BCK-001): Verify that the CodeAnalysisEngine

accurately identifies syntax, runtime, and logical errors in submitted Java

code using Abstract Syntax Tree (AST) parsing and rule-based checks.

• Error Categorization (Test ID: BCK-002): Ensure errors are correctly

classified into syntax (e.g., missing semicolon), runtime (e.g., null pointer

exception), and logical (e.g., incorrect loop logic) categories, with appropriate

feedback for each.

• AI Intermediate Feedback Querying (Test ID: BCK-003): Confirm that the

backend queries the AI model (via LanguageModelInterface) to generate

interpretive feedback, ensuring it aligns with CMPE113 curriculum

objectives.

• Request Handling (Test ID: BCK-004): Validate that the RequestHandler

correctly processes incoming REST API requests, routes them to the

CodeAnalysisEngine, and returns formatted responses.

• Session Management (Test ID: BCK-005): Test the Session Manager’s

ability to track user sessions and maintain state during code submissions and

feedback retrieval.

• Curriculum Database Access (Test ID: BCK-006): Ensure the backend

retrieves relevant course materials from the curriculum database to

contextualize feedback.

Rationale: These tests validate the backend’s core functionality, ensuring accurate

code analysis, reliable feedback generation, and seamless integration with other

subsystems, which are critical for educational effectiveness.

2.3. AI Intermediate Feedback

Description: The AI Intermediate Feedback feature leverages a fine-tuned

Deepseek model to provide educational feedback based on code analysis results.

The model interprets code errors and generates curriculum-aligned hints and

explanations, avoiding direct solutions to promote learning.

Features to Test:

• Feedback Generation (Test ID: AI-001): Verify that the

LanguageModelInterface generates accurate, curriculum-aligned feedback

for Java code errors, focusing on educational guidance (e.g., explaining why a

semicolon is needed rather than providing the fix).

• Fine-Tuning Effectiveness (Test ID: AI-002): Confirm that the fine-tuned

Deepseek model correctly interprets CMPE113-specific Java tasks and

provides relevant feedback based on course materials.

• Contextual Relevance (Test ID: AI-003): Ensure feedback is tailored to the

lab task and student’s progress, using data from the curriculum database.

• Non-Directive Feedback (Test ID: AI-004): Validate that the AI avoids

providing direct code solutions, adhering to the system’s pedagogical

philosophy.

• Error Handling Integration (Test ID: AI-005): Test the AI’s ability to

process and respond to various error types (syntax, runtime, logical) with

appropriate explanations.

• Performance Efficiency (Test ID: AI-006): Measure the latency of AI

feedback generation to ensure it meets performance requirements (e.g.,

response within 2 seconds for typical queries).

Rationale: These tests ensure that the AI model delivers pedagogically sound

feedback that enhances student understanding, aligns with course objectives, and

maintains system responsiveness.

2.4. Vector Database

Description : The Vector Database subsystem (Milvus or ChromaDB) stores and

retrieves semantically indexed course materials including lecture notes, sample

problems, and instructor-written solutions and explanations. It helps the AI module

provide contextually appropriate feedback by correlating code analysis findings

with associated instructional information via vector embeddings. This subsystem

guarantees that feedback is based on the CMPE113 curriculum and relevant to the

student’s current learning aim.

Features to Test:

• Semantic Retrieval Accuracy (TEST ID: VD-001): Check that the system

obtains the most contextually appropriate articles based on the AI model’s

query vectors, guaranteeing alignment with the issue type and course topic.

• Embedding Consistency (TEST ID: VD-002): Confirm that document

embeddings are consistently created and saved using the same vectorization

process.

• Query Performance (TEST ID: VD-003): Measure the response times for

semantic search queries to ensure that retrieval completes within acceptable

latency criteria.

• Data Update Handling (TEST ID: VD-004): Validate that new educational

content may be incorporated and added to the vector database without

disturbing existing queries or creating inconsistency.

• Contextual Relevance Scoring (TEST ID: VD-005): Ensure that the system

gives relevance scores to findings that are consistent with manuel evaluation

by course assistants.

• Access Control for Documents (TEST ID: VD-006): Confirm that vector

database access follows role-based permissions. For example, course

assistants can upload or tag tasks, but students can only query through the

feedback interface.

• Curriculum Synchronization (TEST ID: VD-007): Check that the vector

database content fits the most recent CMPE113 curriculum and lab

standards, preventing obsolete or misaligned feedback from being retrieved.

2.5. User Roles

Description: The SyntaxSavior system implements role-based access control

(RBAC) to manage permissions for four user types: students, instructors, assistants,

and administrators. Each role has distinct functionalities, such as code submission

(students), feedback review and grading (instructors/assistants), and system

configuration (administrators). The RBAC mechanism ensures secure and

appropriate access to system features, protecting sensitive data and maintaining

system integrity.

Features to Test:

• Role-Based Authentication (Test ID: UR-001): Verify that users can log in

using their credentials and are assigned the correct role (student, instructor,

assistant, or administrator) based on the authentication service.

• Access Control Enforcement (Test ID: UR-002): Confirm that each role is

restricted to its authorized functionalities (e.g., students cannot access

grading tools, administrators cannot submit code).

Rationale: These tests ensure that the vector database supports the production of

meaningful and context-aware feedback appropriate for learning. Reliable, fast, and

accurate retrieval of relevant content allows the AI feedback engine to base its

guidance on course materials, improving learning effectiveness and student

understanding. Curriculum updates and compliance with strict access control

further ensure content integrity and role-appropriate interactions.

• Student Permissions (Test ID: UR-003): Test that students can submit

code, view feedback, and access curriculum-aligned materials but are

blocked from administrative or instructor-specific features.

• Instructor/Assistant Permissions (Test ID: UR-004): Validate that

instructors and assistants can review student submissions, provide manual

feedback, and access grading tools, but cannot modify system configurations.

• Administrator Permissions (Test ID: UR-005): Ensure administrators can

manage user accounts, configure system settings (e.g., rate limits, feedback

rules), and monitor system logs, but are restricted from submitting or

grading code.

• Role Switching (Test ID: UR-006): Verify that users with multiple roles

(e.g., an assistant who is also a student) can switch roles seamlessly without

compromising access control.

Rationale: These tests ensure that the RBAC system enforces strict access controls,

preventing unauthorized actions and protecting the system’s educational integrity.

Testing role-specific permissions aligns with security and usability requirements,

ensuring a tailored experience for each user type.

2.6. Submission Checks

Description: The Submission Checks feature validates code submissions before

processing to ensure they meet predefined criteria, such as correct file structure,

package naming, and adherence to assignment requirements. These checks

complement local linters by catching errors that are not typically detected locally,

such as incorrect package declarations or missing submission metadata, reducing

backend processing errors and improving user experience.

Features to Test:

• File Structure Validation (Test ID: SC-001): Confirm that the system

checks for correct file structure (e.g., .java files in the appropriate directory)

before accepting submissions.

• Package Naming Compliance (Test ID: SC-002): Verify that submissions

adhere to expected package naming conventions (e.g., cmpe113.lab1) as

defined in the assignment specifications.

• Metadata Verification (Test ID: SC-003): Ensure the system validates

submission metadata, such as student ID, lab number, and submission

timestamp, to prevent incomplete or invalid submissions.

• Pre-Submission Error Feedback (Test ID: SC-004): Test that the IDE

plugin displays clear, actionable error messages (e.g., “Incorrect package

name: expected cmpe113.lab1”) when submission checks fail.

• Bypass Prevention (Test ID: SC-005): Validate that users cannot bypass

submission checks by manipulating inputs or using malformed submissions,

ensuring robust validation.

• Integration with Backend (Test ID: SC-006): Confirm that submission

checks are performed consistently between the IDE plugin and backend, with

no discrepancies in validation logic.

Rationale: These tests ensure that submission checks enhance system reliability by

catching errors early, reducing backend load, and providing students with

immediate feedback to correct submission issues. This aligns with the system’s goal

of fostering a smooth and educational user experience.

2.7. Feedback Accuracy

Description: The Feedback Accuracy feature ensures that the AI-generated and

backend-processed feedback is relevant, educationally clear, and aligned with the

CMPE113 curriculum. Feedback must guide students toward understanding errors

and improving their code without providing direct solutions, promoting

independent learning and critical thinking.

Features to Test:

• Relevance to Error Type (Test ID: FA-001): Verify that feedback accurately

addresses the specific error type (syntax, runtime, or logical) with

appropriate explanations (e.g., “A null pointer exception occurs when

accessing an uninitialized object”).

• Curriculum Alignment (Test ID: FA-002): Confirm that feedback

references CMPE113 course materials and lab objectives, ensuring relevance

to the student’s learning context.

• Educational Clarity (Test ID: FA-003): Test that feedback is written in

clear, concise language suitable for novice programmers, avoiding technical

jargon unless explained.

• Non-Directive Guidance (Test ID: FA-004): Ensure feedback provides hints

or explanations (e.g., “Check the loop termination condition”) rather than

direct code fixes to encourage problem-solving.

• Consistency Across Submissions (Test ID: FA-005): Validate that similar

errors in different submissions receive consistent feedback, ensuring fairness

and reliability.

• User Acceptance Feedback (Test ID: FA-006): Collect qualitative feedback

from CMPE113 students and instructors during user acceptance testing to

assess perceived accuracy and helpfulness.

Rationale: These tests ensure that feedback meets the system’s pedagogical goals

by being accurate, relevant, and supportive of learning. User acceptance testing

validates educational effectiveness, while automated tests confirm consistency and

alignment with course objectives.

2.8. Error Handling

Description: The Error Handling feature ensures that the SyntaxSavior system

robustly detects, reports, and recovers from various error types (syntax, runtime,

logical) during code analysis and user interactions. Effective error handling

prevents system crashes, provides clear user feedback, and maintains operational

stability under unexpected conditions.

Features to Test:

• Syntax Error Reporting (Test ID: EH-001): Verify that syntax errors (e.g.,

missing semicolon, incorrect variable declaration) are detected and reported

with precise location details and explanations.

• Runtime Error Detection (Test ID: EH-002): Confirm that runtime errors

(e.g., null pointer exceptions, array index out of bounds) are identified during

code analysis with actionable feedback.

• Logical Error Identification (Test ID: EH-003): Test the system’s ability to

flag logical errors (e.g., incorrect algorithm output) using rule-based checks

and AI analysis, providing hints for correction.

• Error Recovery (Test ID: EH-004): Ensure the system gracefully handles

errors without crashing, allowing users to continue working (e.g., plugin

remains responsive after a failed submission).

• User-Friendly Error Messages (Test ID: EH-005): Validate that error

messages are clear, concise, and tailored to novice programmers, avoiding

cryptic technical details.

• Logging and Monitoring (Test ID: EH-006): Confirm that all errors are

logged with sufficient detail (e.g., error type, timestamp, user ID) for

administrators to diagnose and resolve issues.

Rationale: These tests ensure that error handling is robust and user-friendly,

maintaining system stability and providing students with clear guidance to resolve

issues. Comprehensive logging supports maintainability and troubleshooting,

aligning with engineering standards.

2.9. Security

Description: The Security feature protects the SyntaxSavior system against

unauthorized access, malicious inputs, and cheating attempts, ensuring a secure

educational environment. Security mechanisms include authentication, rate-

limiting, anti-cheating measures, and input filtering to prevent jailbreaking or

privilege escalation.

Features to Test:

• Authentication (Test ID: SEC-001): Verify that only authenticated users

with valid credentials can access the system, using secure protocols (e.g.,

OAuth 2.0 or JWT).

• Authorization (Test ID: SEC-002): Confirm that role-based access controls

prevent users from accessing unauthorized features or data (e.g., students

cannot view other students’ submissions).

• Rate-Limiting (Test ID: SEC-003): Test that the system enforces rate limits

(e.g., maximum submissions per minute) to prevent denial-of-service attacks

or abuse.

• Anti-Cheating Mechanisms (Test ID: SEC-004): Validate that the system

detects and flags suspicious activities, such as identical code submissions or

attempts to bypass feedback restrictions.

• Input Filtering and Validation (Test ID: SEC-005): Ensure that all user

inputs (e.g., code, metadata) are sanitized to prevent injection attacks,

jailbreaking, or privilege escalation.

• Data Encryption (Test ID: SEC-006): Confirm that sensitive data (e.g., user

credentials, code submissions) is encrypted during transmission (e.g., TLS)

and storage.

Rationale: These tests ensure that the system is secure against internal and

external threats, protecting user data and maintaining the integrity of the

educational process. Robust security measures are critical for an academic tool

deployed in a university setting.

3. Testing Methodology

3.1. Unit Testing:

Description: Unit testing focuses on validating individual components or modules

of the SyntaxSavior system in isolation, as specified in the low-level design report.

The goal is to ensure that each unit (e.g., functions, classes, or methods) performs as

expected under controlled conditions.

Approach:

• Scope: Test units such as the CodeAnalysisEngine’s AST parsing logic, the

LanguageModelInterface’s feedback generation, the RequestHandler’s API

routing, and the IDE plugin’s syntax highlighting and error detection

functions.

• Tools: JUnit 5 for backend Java components, Jest for JavaScript-based plugin

components, and Mockito for mocking dependencies.

• Test Cases: Develop test cases for each unit based on functional

requirements (e.g., parsing a Java file, generating a feedback string) and edge

cases (e.g., malformed input, null values).

• Execution: Automated tests run during continuous integration (CI) pipelines

using Jenkins or GitHub Actions to ensure early defect detection.

• Metrics: Achieve at least 90% code coverage for critical modules, measured

using JaCoCo for Java and Istanbul for JavaScript.

Rationale: Unit testing ensures that individual components are reliable and meet

design specifications, reducing the likelihood of defects propagating to higher

testing levels. This aligns with the system’s maintainability and quality goals.

3.2. Integration Testing:

Description: Integration testing validates the interactions between SyntaxSavior’s

subsystems, including the IDE plugin, backend server, AI model, and vector

database. The goal is to ensure seamless communication and data flow across

components.

Approach:

• Scope: Test key integration points, such as:

o IDE plugin to backend (REST API communication for code submission

and feedback retrieval).

o Backend to AI model (querying the Deepseek model via

LanguageModelInterface).

o Backend to vector database (retrieving contextual materials from

Milvus/ChromaDB).

o Authentication service to role-based access control (RBAC)

enforcement.

• Tools: Postman for API testing, Selenium for plugin-backend interaction

testing, and custom scripts for database query validation.

• Test Cases: Include scenarios for successful interactions (e.g., submitting

valid code and receiving feedback) and failure cases (e.g., network errors,

invalid API tokens).

• Execution: Conduct automated and manual tests in a staging environment

mimicking production conditions.

• Metrics: Verify 100% coverage of critical integration paths, with zero critical

defects in API or data exchange.

Rationale: Integration testing ensures that subsystems work together as intended,

preventing issues such as data mismatches or communication failures. This is

critical for the system’s end-to-end functionality and user experience.

3.3. System Testing:

Description: System testing validates the SyntaxSavior system as a whole, ensuring that all

components (IDE plugin, backend, AI model, vector database) function cohesively in a

production-like environment. This level tests end-to-end workflows, such as code

submission, analysis, and feedback delivery.

Approach:

• Scope: Test complete user workflows, including:

o Student submitting Java code via the VS Code plugin and receiving feedback.

o Instructor reviewing submissions and providing manual feedback.

o Administrator configuring system settings (e.g., rate limits).

o Error handling and recovery during submission or feedback generation.

• Tools: Selenium for UI testing, JMeter for simulating user interactions, and manual

testing for qualitative validation.

• Test Cases: Cover functional scenarios (e.g., submitting valid code), non-functional

requirements (e.g., response time under 2 seconds), and negative cases (e.g.,

submitting malformed code).

• Execution: Perform tests in a staging environment with VS Code, Spring Boot

backend, and Milvus/ChromaDB deployed.

• Metrics: Achieve 95% pass rate for functional test cases and zero critical defects

impacting core workflows.

Rationale: System testing ensures that the integrated system meets all functional and non-

functional requirements, providing confidence in its readiness for deployment in an

educational setting.

3.4. Performance Testing

Description: Performance testing evaluates the SyntaxSavior system’s scalability,

responsiveness, and stability under expected and peak loads, such as handling up to 50

concurrent submissions, as specified in the non-functional requirements.

Approach:

• Scope: Test system performance under:

o Normal load (10–20 concurrent submissions).

o Peak load (50 concurrent submissions, simulating a lab deadline).

o Stress conditions (beyond 50 submissions to identify breaking points).

• Tools: JMeter for load testing, Grafana/Prometheus for monitoring server metrics

(e.g., CPU, memory usage), and custom scripts for latency measurement.

• Test Cases: Measure response time for feedback generation (target: <2 seconds),

throughput (submissions processed per minute), and resource utilization (e.g.,

database query latency).

• Execution: Conduct tests in a controlled environment with production-equivalent

hardware and network configurations.

• Metrics: Ensure 99% of feedback responses are delivered within 2 seconds under

peak load, with no system crashes or significant degradation.

Rationale: Performance testing validates the system’s ability to handle concurrent users in

a university setting, ensuring scalability and reliability during high-demand periods like

assignment deadlines.

3.5. User Acceptance Testing (UAT)

Description: User Acceptance Testing (UAT) involves real users from the CMPE113

course (students, instructors, assistants) to validate the system’s usability,

educational effectiveness, and alignment with pedagogical goals. UAT ensures that

SyntaxSavior meets stakeholder expectations in a real-world context.

Approach:

• Scope: Test usability of the IDE plugin (e.g., ease of code submission, clarity

of feedback), feedback relevance, and instructor/administrator tools (e.g.,

grading, system configuration).

• Participants: 20–30 CMPE113 students, 2–3 instructors, and 2–3 lab

assistants, representing all user roles.

• Tools: Surveys (Google Forms for feedback collection), usability testing

frameworks (e.g., Morae for screen recording), and manual observation.

• Test Cases: Include tasks like submitting a lab assignment, reviewing AI

feedback, and grading submissions, with qualitative feedback on clarity,

helpfulness, and ease of use.

• Execution: Conduct UAT in a controlled lab setting with the production

version of SyntaxSavior installed on university computers.

• Metrics: Achieve an average user satisfaction score of 4/5 or higher (based

on survey responses) and address all critical usability issues raised.

Rationale: UAT ensures that SyntaxSavior is intuitive, educationally effective, and

aligned with the needs of its primary users, fostering adoption and satisfaction in

the CMPE113 course.

3.6. Beta Testing

Description: Beta testing involves a limited release of SyntaxSavior to selected

CMPE113 lab sections to gather real-world feedback and identify issues before full

deployment. This phase includes A/B testing to compare feature variations, such as

automatic versus manual feedback triggers.

Approach:

• Scope: Test the system with 2–3 lab sections (approximately 50–75

students) over a 2-week period, focusing on stability, usability, and feature

effectiveness.

• Variations: Conduct A/B testing for:

o Automatic versus manual feedback triggers (e.g., real-time versus

user-initiated analysis).

o Feedback levels (e.g., detailed hints versus brief explanations).

• Tools: Bug tracking tools (e.g., Jira), telemetry for usage analytics (e.g., user

interaction logs), and feedback forms for qualitative input.

• Test Cases: Include typical lab workflows (e.g., submitting assignments,

reviewing feedback) and stress scenarios (e.g., multiple submissions during a

lab session).

• Execution: Deploy SyntaxSavior in a production-like environment with

monitoring and support for rapid issue resolution.

• Metrics: Achieve a bug-free experience for 90% of beta users, with

actionable feedback to refine features before full rollout.

Rationale: Beta testing validates the system in a real-world academic setting,

identifying usability and stability issues while optimizing features based on user

preferences, ensuring a successful full deployment.

4. Test Environment

This section describes the hardware, software, and network configurations required

for testing the SyntaxSavior system. The test environment is designed to replicate

production conditions as closely as possible to ensure accurate and reliable test

results, in accordance with IEEE 829 requirements.

Hardware:

• Client Machines: University lab computers with Intel Core i5/i3 processors,

8 GB RAM, and 512 GB SSD storage, running Windows 10/11 or Ubuntu

22.04.

• Backend Server: Dedicated server with 8-core CPU, 32 GB RAM, and 1 TB

SSD, hosted on a cloud provider (e.g., AWS EC2 or Azure).

• Database Server: Separate instance for Milvus/ChromaDB with 4-core CPU,

16 GB RAM, and 500 GB SSD, optimized for vector search workloads.

Software:

• IDE: Visual Studio Code (version 1.85 or later) with the SyntaxSavior plugin

installed.

• Backend: Spring Boot-based Java server (Java 17, Spring Boot 3.2), running

on Apache Tomcat 10.

• Database: Milvus 2.3 or ChromaDB 0.4 for vector storage and retrieval, with

PostgreSQL 16 for curriculum metadata.

• AI Model: Deepseek API endpoint (or equivalent fine-tuned model) hosted

on a secure cloud service with REST API access.

• Testing Tools:

o JUnit 5, Mockito, and JaCoCo for unit testing.

o Postman and Selenium for integration testing.

o JMeter and Grafana/Prometheus for performance testing.

o Google Forms and Morae for UAT and beta testing feedback.

• Monitoring: Prometheus for server metrics, ELK Stack for log aggregation,

and custom telemetry for usage analytics.

Network:

• Configuration: High-speed university LAN with 1 Gbps bandwidth,

simulating production network conditions.

• Security: TLS 1.3 for encrypted communication, firewall rules to restrict

access to authorized IPs, and VPN for remote testing if required.

• Latency: Target latency of <50 ms for internal network requests, with

simulated external latency (100–200 ms) for cloud-based AI model access.

Environment Setup:

• Staging Environment: A fully configured replica of the production

environment, including VS Code with the SyntaxSavior plugin, Spring Boot

server, Milvus/ChromaDB, and Deepseek API integration, deployed on cloud

infrastructure.

• Test Data: Synthetic and anonymized datasets mimicking CMPE113 lab

assignments, including valid Java code, common errors (syntax, runtime,

logical), and curriculum materials stored in the vector database.

• Access Control: Restricted access to the test environment, with credentials

managed via a secure identity provider (e.g., university SSO or Keycloak).

Maintenance:

• Version Control: All software components tracked in a Git repository, with

tagged releases for testing stability.

• Environment Refresh: Regular resets of the test environment to clear test

data and ensure consistency, performed weekly or after major test cycles.

• Documentation: Detailed setup guides and configuration scripts maintained

in the project repository to streamline environment provisioning.

Rationale: The test environment ensures that testing is conducted under realistic

conditions, minimizing discrepancies between test results and production behavior.

A well-defined environment supports repeatable and reliable tests, aligning with the

system’s quality and scalability objectives.

5. Sample Test Case

This section provides a sample test case for User Acceptance Testing (UAT) to

validate the SyntaxSavior system’s usability and educational effectiveness for

CMPE113 students. The test case focuses on a typical student workflow—

submitting a Java code assignment via the VS Code plugin and receiving AI-

generated feedback—ensuring the system is intuitive and pedagogically sound.

Test Case ID: UAT-001

Title: Validate Student Code Submission and Feedback Retrieval

Feature Tested: IDE Plugin, Backend Processing, AI Intermediate Feedback,

Feedback Accuracy

Test Objective: Verify that a CMPE113 student can submit a Java code assignment

through the SyntaxSavior VS Code plugin, receive accurate and curriculum-aligned

feedback, and find the process intuitive and helpful.

Test Type: User Acceptance Testing (Manual)

Preconditions:

• VS Code (version 1.85 or later) installed on a university lab computer with

the SyntaxSavior plugin configured.

• Student user account created with valid credentials and CMPE113 course

access.

• Test environment (staging) deployed with Spring Boot backend,

Milvus/ChromaDB, and Deepseek API endpoint.

• Sample CMPE113 lab assignment (e.g., “Write a Java program to calculate the

factorial of a number”) available in the curriculum database.

Test Steps:

1. Log in to the SyntaxSavior plugin using the student’s university credentials.

2. Open VS Code and create a new Java file for the lab assignment

(e.g., Factorial.java).

3. Write a Java program with an intentional error (e.g., incorrect loop condition

causing an infinite loop).

4. Trigger the SyntaxSavior plugin’s “Submit Code” feature (manual trigger via

plugin UI).

5. Observe the plugin’s response, including error detection and feedback

display.

6. Review the AI-generated feedback for clarity, relevance, and alignment with

CMPE113 learning objectives.

7. Complete a post-test survey rating the usability (ease of submission,

feedback clarity) and educational value (helpfulness of feedback) on a 1–5

scale.

Input Data:

• Java code with a logical error:

• Submission metadata: Student ID, Lab 1, CMPE113 course.

Expected Results:

• Step 1: Successful login with student role assigned.

• Step 4: Code submission completes within 2 seconds, with no errors in the

plugin UI.

• Step 5: Plugin detects the logical error and displays a pop-up with feedback.

• Step 6: Feedback is clear, curriculum-aligned, and non-directive (e.g., “Check

the loop condition to handle negative inputs, as factorial is undefined for

negative numbers”).

• Step 7: Student rates usability and educational value at 4/5 or higher in the

survey, with no critical usability issues reported.

Actual Results: (To be recorded during testing)

Pass/Fail Criteria:

• Pass: All expected results are met, and student feedback score is ≥4/5.

• Fail: Any critical failure (e.g., submission error, irrelevant feedback, or score

<4/5 with usability issues).

Test Environment:

• Hardware: University lab computer (Intel Core i5, 8 GB RAM, Windows 11).

• Software: VS Code with SyntaxSavior plugin, Spring Boot backend,

Milvus/ChromaDB, Deepseek API.

• Network: University LAN with 1 Gbps bandwidth.

Roles and Responsibilities:

• Test Executor: CMPE113 student participant.

• Test Facilitator: QA engineer or lab assistant to guide the process and

collect survey responses.

• Test Analyst: QA team member to review results and document findings.

Risks:

• Risk of unclear feedback confusing the student, mitigated by iterative

feedback refinement during beta testing.

• Risk of plugin unresponsiveness, mitigated by performance testing and

environment stability checks.

Rationale: This test case validates the core student workflow, ensuring that the

system is user-friendly, delivers educationally effective feedback, and meets

CMPE113 course requirements. UAT with real students provides critical insights

into usability and pedagogical impact, aligning with the system’s goals.

6. Conclusion

The Test Plan for the SyntaxSavior system provides a comprehensive framework for

validating its functionality, performance, security, and educational effectiveness as

an AI-powered programming education tool for CMPE113 at TED University. By

systematically testing critical features—such as the IDE plugin, backend processing,

AI feedback, user roles, and security mechanisms—the plan ensures that the system

meets both functional and non-functional requirements outlined in the high-level

and low-level design reports. The multi-level testing methodology, encompassing

unit, integration, system, performance, user acceptance, and beta testing, guarantees

thorough validation of all components and workflows, from code submission to

feedback delivery.

Key objectives achieved through this test plan include verifying real-time code

analysis, ensuring curriculum-aligned feedback, validating scalability under peak

loads (e.g., 50 concurrent submissions), and confirming robust security against

unauthorized access or malicious inputs. User acceptance testing with CMPE113

students, instructors, and assistants ensures that the system is intuitive and

pedagogically sound, fostering independent learning while providing actionable

guidance. Beta testing further refines the system by incorporating real-world

feedback, preparing it for a successful full deployment.

Risks such as incorrect feedback, system overload, or security vulnerabilities are

mitigated through rigorous testing and iterative improvements, aligning with IEEE

829 and engineering standards like IEEE 1016-2009 and SOLID principles. The test

environment, replicating production conditions, ensures reliable and repeatable

results, while clearly defined roles and responsibilities streamline execution.

Ultimately, this test plan establishes SyntaxSavior as a reliable, secure, and effective

tool for enhancing programming education, ready to support TED University’s

academic mission.

7. References

1. IEEE Computer Society. (2008). IEEE Standard for Software and System Test
Documentation (IEEE Std 829-2008). IEEE.

• Provides the structure and guidelines for test plan documentation,
used to ensure compliance in this report.

2. IEEE Computer Society. (2009). IEEE Standard for Software and System
Design Documentation (IEEE Std 1016-2009). IEEE.

• Referenced for aligning the test plan with design specifications and
maintainability requirements.

3. International Organization for Standardization. (2018). ISO/IEC/IEEE 29119-
3:2013 - Software and Systems Engineering - Software Testing - Part 3: Test
Documentation. ISO/IEC/IEEE.

• Guided the format and content of test cases and methodology
descriptions.

4. Myers, G. J., Sandler, C., & Badgett, T. (2011). The Art of Software Testing (3rd
ed.). Wiley.

• Informed testing methodologies, particularly unit, integration, and
user acceptance testing approaches.

5. Sommerville, I. (2015). Software Engineering (10th ed.). Pearson.

• Provided insights into software testing best practices and
performance testing strategies.

6. Spring Boot Documentation. (2023). Spring Boot 3.2 Reference Guide.
Retrieved from https://docs.spring.io/spring-
boot/docs/3.2.x/reference/html/.

• Guided backend server setup and testing configurations.

7. Visual Studio Code Documentation. (2023). VS Code Extension API. Retrieved
from https://code.visualstudio.com/api.

• Referenced for plugin development and testing requirements.

https://docs.spring.io/spring-boot/docs/3.2.x/reference/html/
https://docs.spring.io/spring-boot/docs/3.2.x/reference/html/
https://code.visualstudio.com/api

